Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1651076

RESUMEN

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/química , Alcaloides/farmacología , Caspasa 3/efectos de los fármacos , Caspasa 3/genética , Coronavirus/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/genética , Bases de Datos Farmacéuticas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/química , Flavanonas/farmacología , Humanos , Indoles/química , Indoles/farmacología , Interleucina-6/genética , Lignina/química , Lignina/farmacología , Luteolina/química , Luteolina/farmacología , Proteína Quinasa 14 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 8 Activada por Mitógenos/genética , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/efectos de los fármacos , Subunidad p50 de NF-kappa B/genética , Naftoles/química , Naftoles/farmacología , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Mapas de Interacción de Proteínas , Quercetina/química , Quercetina/farmacología , SARS-CoV-2/metabolismo , Transducción de Señal , Sitoesteroles/química , Sitoesteroles/farmacología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA